

Endocine™ formulated nasal influenza H1N1 vaccine induces broad specific antibody responses and confers protection in ferrets

Anna-Karin Maltais^a, Koert J. Stittelaar^b, Edwin J.B. Veldhuis Kroeze^b, Geert van Amerongen^b, Leon de Waal^b, Marcel L. Dijkshoorn^c, Gabriel P. Krestin^c, Jorma Hinkula^a, Hans Arwidsson^a, Alf Lindberg^a and Albert D.M.E. Osterhaus^{b,d}.

- ^a Eurocine Vaccines AB, Karolinska Institutet Science Park, 171 65 Solna, Sweden ^b Viroclinics Biosciences B.V., 3029 AK Rotterdam, The Netherlands
- ^c Department of Radiology, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands ^d Department of Viroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands

MAIN FINDINGS

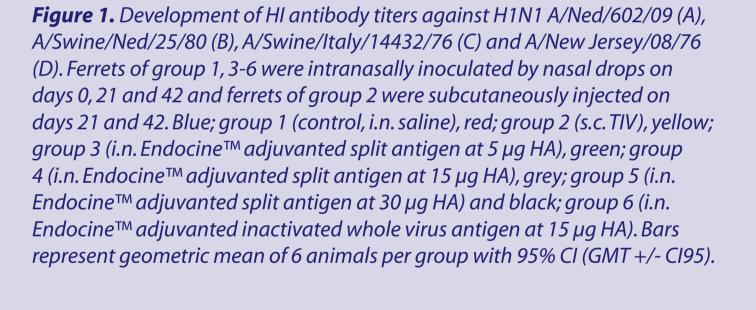
- Nasal administration of inactivated influenza antigens formulated with Endocine™ conferred complete protection against virus replication in the lungs after viral challenge.
- Nasal immunization induced high haemagglutination inhibition (HI) and virus neutralization (VN) antibody titers.
- Substantial HI and VN antibody titers were demonstrated after a single nasal immunization.
- Cross reactive HI and VN antibodies against distant viruses of swine origin were induced.
- Vaccines with split antigen performed best with respect to both immune responses and protection against disease.
- All nasal vaccines performed significantly better than the parenteral control vaccine.

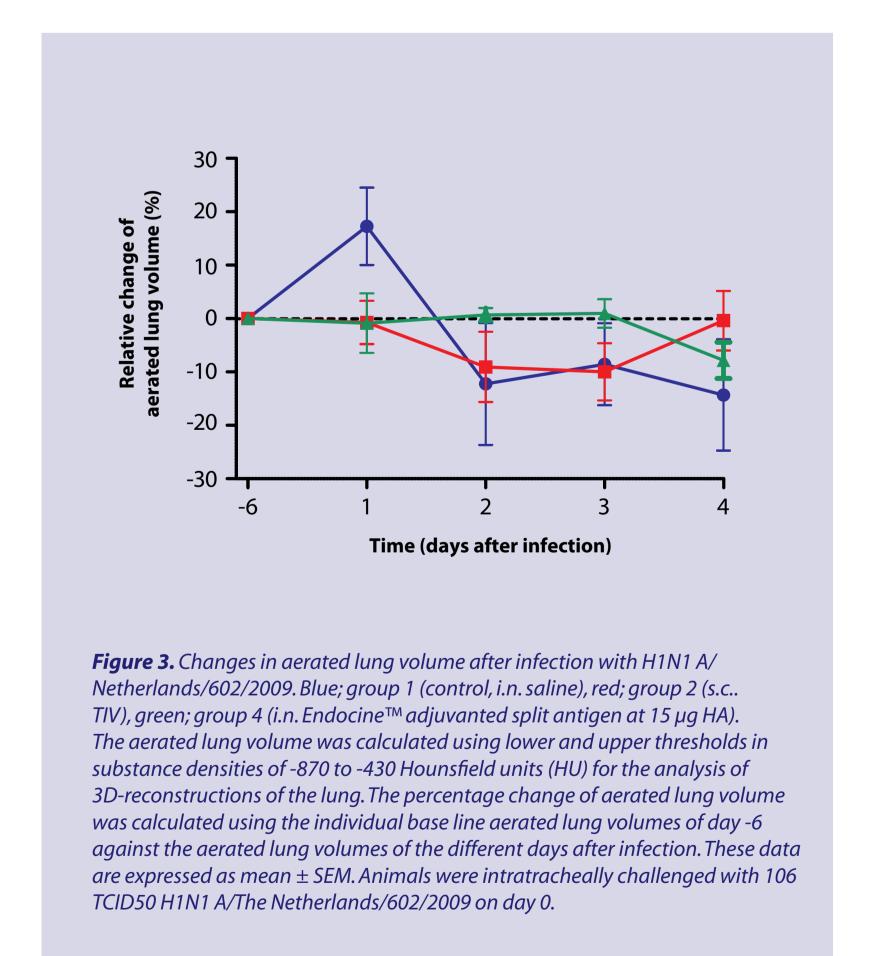
Objective

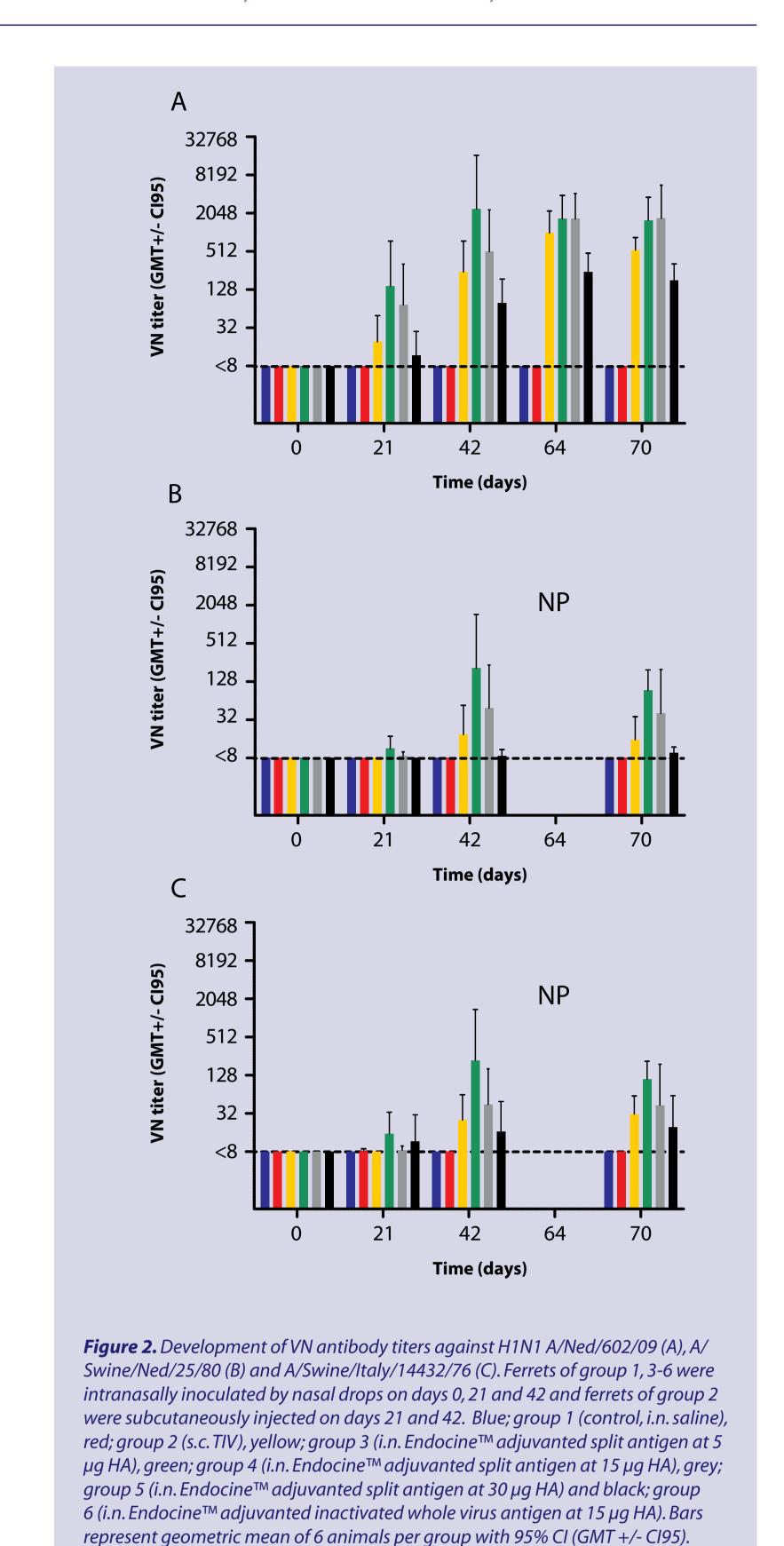
Objective to evaluate the protective effect of nasal influenza vaccines formulated with Endocine™ and to compare with a commercial injected vaccine.

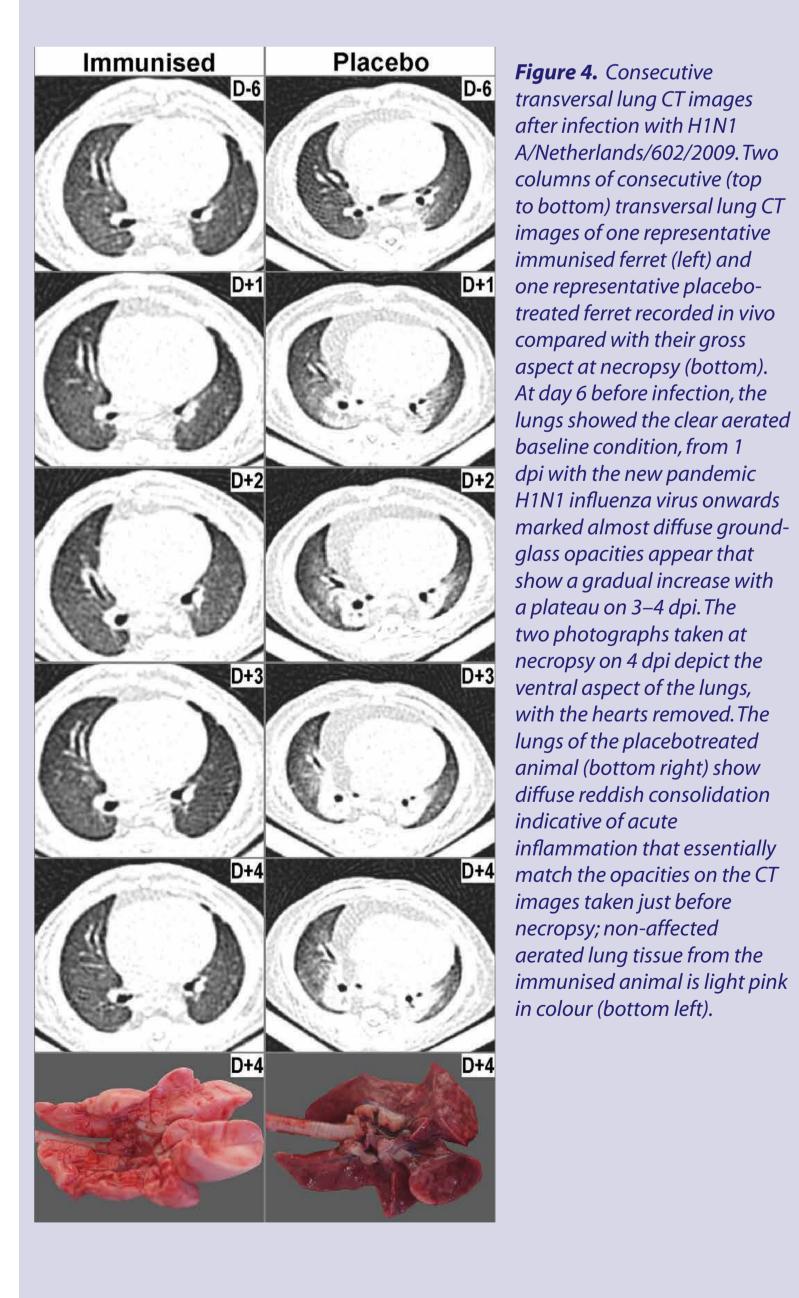
- Measure viral load in lungs and turbinates after challenge with a homologous wildtype H1N1 virus.
- Assess humoral responses, HI and VN antibodies against homologous and distant H1N1 viruses.

Material and Methods


- Ferrets: influenza naïve, ~12 months old, n= 6 per group
- Nasal administration: 3x (nose drops), 3 wks apart, inactivated influenza A/H1N1/California/7/2009 split antigen at 5, 15 and 30µg HA/0.2 ml and whole inactivated virus (WIV) at 15µg HA/0.2 ml formulated with Endocine™
- Parenteral administration: 2x (s.c), 3 wks apart, Fluarix® season 2010/2011 (including A/H1N1/California/7/2009)
- Intratracheal challenge: 10⁶ TCID50 A/Netherlands/602/2009 (wt-pH1N1), 4 wks post last immunization


Legend


Group


Group	Treatment	Route	Doses
1	Saline	i.n.	3
2	TIV	s.c.	2
3	Split Ag 5µg + Endocine™	i.n.	3
4	Split Ag 15µg + Endocine™	i.n.	3
5	Split Ag 30µg + Endocine™	i.n.	3
6	Whole Vir 15µg + Endocine™	i.n.	3

NP= not performed.

RESULTS

Table 1

Efficacy of Endocine™ formulated 2009 H1N1 vaccines in ferrets demonstrated by clinical, virological and gross-pathology parameters.

		1	2	3	4	5	6
Clinical	Survival	6/6	5/6	6/6	6/6	6/6	6/6
score	Fever [°C]	1.7±0.6 (6/6)	1.1±0.4 (6/6)	1.3±0.3(6/6)	1.2±0.6(4/5*)	1.1±0.6(6/6)	1.3±0.2(6/6)
	Body weight loss [%]	18.0±4.6 (6/6)	11.5±2.1 (6/6)	-2.2±2.6 (1/6)	1.7±1.5 (4/6)	2.7±3.3 (4/6)	4.7±3.1 (6/6)
Virology	Lung virus load [log10TCID50/g]	5.7±0.5 (6/6)	5.5±0.9 (6/6)	≤1.5 (0/6)	≤1.4 (0/6)	≤1.3 (0/6)	≤1.3 (0/6)
	Turbinates virus load [log10TCID50/g]	7.2±2.4 (6/6)	6.9±1.5 (6/6)	≤1.9 (0/6)	≤1.7 (0/6)	≤1.7 (0/6)	4.1±2.7 (3/6)
	Virus shedding in nasal swabs [log10TCID50/g]	2.6 (5/6)	1.2 (4/6)	0.058 (1/6)	0.0 (0/6)	0.0 (0/6)	1.4 (3/6)
	Virus shedding in throat swabs [log10TCID50/g]	10 (6/6)	10 (6/6)	0.0 (1/6)	0.14 (1/6)	0.0 (1/6)	4.2 (5/6)
Gross	Affected lung tissue [%]	50±25 (6/6)	37±21 (6/6)	8±4 (5/6)	7±5 (4/6)	7±5 (4/6)	8±4 (5/6)
pathology	Relative lung weight	1.5±0.5	1.3±0.1	0.8±0.1	0.8±0.1	0.8±0.2	0.9±0.1

^{*} body temperature of 1 animal in group 4 was not available due to malfunction of the recorder

CONCLUSION

- Ferret data support continued development of Endocine™ nasal influenza vaccine.
- Split antigen and whole virus based Endocine™ nasal influenza vaccine were studied.
- Consecutive in vivo CT imaging allows for a day to day read out of vaccine efficacy.
- Endocine™ nasal influenza vaccine conferred broad and protective immune responses in ferrets

Koert J. Stittelaar

